DLR Fire Detection Satellite BIROS Successfully Releases BEESAT-4 Picosatellite into Space

DLR Fire Detection Satellite BIROS Successfully Releases BEESAT-4 Picosatellite into Space




On 9 September 2016 at 13:00 CEST, the BIROS (Bi-Spectral Infrared Optical System) fire detection satellite developed and built by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) released BEESAT-4 (Berlin Educational and Experimental Picosatellite) into space 515 kilometres above the Norwegian Svalbard archipelago. The cubic satellite with sides 10 centimetres long was developed and built by staff and students at the Technical University of Berlin (TU Berlin) and was supported by the DLR Space Administration with funds from the German Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie; BMWi).

installing-the-beesat-4-picosatellite-in-biros

BEESAT-4 should now be able to use the on-board Phoenix GPS receiver to gather precise position and orbit determination information, as well as take series of photographs and individual images of Earth’s surface with a special camera to confirm the position of the satellite. The telemetry and image data will then be sent to theBIROS ‘mother ship’ that then forwards it to the TU Berlin ground station for analysis. BIROS was successfully launched from the Satish Dhawan Space Centre in India on 22 June 2016.

“Precise knowledge of the position of the picosatellite (CubeSat) is a prerequisite for formation flights for multiple satellites. With the picosatellite class in particular, formation flights offer the advantage that tasks and functions can be allocated to different satellites. Furthermore, multiple satellites enable longer overflight times over ground stations for the transmission of telemetry and payload data. In addition, regions of interest can be flown over multiple times,” explains Sascha Weiss, the BEESAT-4 project leader at TU Berlin, adding: “We are continuing our sequence of picosatellites with BEESAT-4. We specifically want to determine the position of the satellite over the next 12 months using the Phoenix GPS receiver so we can predict the orbit of BEESAT-4.”

BEESAT-4 Flight Model

BEESAT-4 Flight Model

The BEESAT-4 mission builds on the knowledge and experience of previous BEESAT missions, so the majority of the work is not spent on the construction of the satellite but on developing the complex software. “Two science staff and two students have been on our team since 2013. With the development and operation of BEESAT-4, we have been able to reinforce the practical aspects of student training at TU Berlin’s Institute of Aerospace. Numerous undergraduates have completed their theses within the scope of the mission,” explains Weiss.




Categories: Business

About Author

GIS Resources

GIS Resources is an initiative of Spatial Media and Services Enterprises with the purpose that everyone can enrich their knowledge and develop competitiveness. GIS Resources is a global platform, for latest and high-quality information source for the geospatial industry, brings you the latest insights into the developments in geospatial science and technology.

Write a Comment

Your e-mail address will not be published.
Required fields are marked*

This site uses Akismet to reduce spam. Learn how your comment data is processed.